辛辛那提大学离散数学-学习资料
辛辛那提大学离散数课程,内容覆盖集合、命题逻辑、逆否命题、范式、谓词逻辑、贝叶斯定理、图论、树等

关键词标签: 离散数学
MATH1071; Discrete Math; 离散数学
🏆 课程学习中心 | 🚧 CS数学基础课程合辑 | 🌍 课程主页 | 📺 中英字幕视频 | 🚀 项目代码解析
Discrete Math
离散数学
University Of Cincinnati
辛辛那提大学
MATH1071
⭐⭐⭐⭐⭐


课程介绍

MATH1071; Discrete Math; 离散数学

Trefor Bazett 教授在 Cincinnati 大学任教时,制作了两套完整的的数学课程(微积分、离散数学),上传网络后备受欢迎!课程覆盖核心知识要点,并借助可视化的方式做了生动讲解,是基础学习和查漏补缺的优先选择。

MATH1071; Discrete Math; 离散数学

Discrete Math是其中的离散数学课程,内容覆盖集合、命题逻辑、范式、概率空间、图论、树结构等,离散数学也是后续部分工科方向课程(例如 数据库)的基础,该课程形象的可视化与活泼的授课方式,让你更好地掌握相关的抽象数学知识。

MATH1071; Discrete Math; 离散数学
MATH1071; Discrete Math; 离散数学

课程讲师 Trefor Bazett,2016-2019年任职于 University of Cincinnati,担任助理教授,系列课程也是那时制作完成!目前任职于University of Victoria,主要爱好是数学教育,同时对代数拓扑感兴趣。


课程资料 | 下载

MATH1071; Discrete Math; 离散数学

扫描上方图片二维码,关注公众号并回复关键字 🎯『MATH1071』,就可以获取整理完整的资料合辑啦!当然也可以点击 🎯 这里 查看更多课程的资料获取方式!

MATH1071; Discrete Math; 离散数学

ShowMeAI 对课程资料进行了梳理,整理成这份完备且清晰的资料包:

说明1:课程没有对外发布直接的课件等资料。团队搜索和筛选了能找到的、最匹配的相关资源。


课程视频 | B站

🌍 B站 | 【双语字幕+资料下载】辛辛那提 MATH1071 | 离散数学(2020·完整版)

ShowMeAI 将视频上传至B站,并增加了中英双语字幕,以提供更加友好的学习体验。点击页面视频,可以进行预览。推荐前往 👆 B站 观看完整课程视频哦!

本门课程,ShowMeAI 将部分章节进行了切分,按照主题形成更短小的视频片段,便于按照标题进行更快速的检索。切分后的视频清单列写在这里:

序号 视频清单
L1 Intro to Discrete Math - Welcome to the Course!
L2 Intro to Sets - Examples, Notation & Properties
L3 Set-Roster vs Set-Builder notation
L4 The Empty Set & Vacuous Truth
L5 Cartesian Product of Two Sets A x B
L6 Relations between two sets - Definition + First Examples
L7 The intuitive idea of a function
L8 Formal Definition of a Function using the Cartesian Product
L9 Example: Is this relation a function?
L10 Intro to Logical Statements
L11 Intro to Truth Tables - Negation, Conjunction, and Disjunction
L12 Truth Table Example: ~p V ~q
L13 Logical Equivalence of Two Statements
L14 Tautologies and Contradictions
L15 3 Ways to Show a Logical Equivalence - Ex: DeMorgan’s Laws
L16 Conditional Statements: if p then q
L17 Vacuously True Statements
L18 Negating a Conditional Statement
L19 Contrapositive of a Conditional Statement
L20 The converse and inverse of a conditional statement
L21 Biconditional Statements - “if and only if”
L22 Logical Arguments - Modus Ponens & Modus Tollens
L23 Logical Argument Forms: Generalizations, Specialization, Contradiction
L24 Analyzing an argument for validity
L25 Predicates and their Truth Sets
L26 Universal and Existential Quantifiers, ∀ “For All” and ∃ “There Exists”
L27 Negating Universal and Existential Quantifiers
L28 Negating Logical Statements with Multiple Quantifiers
L29 Universal Conditionals P(x) implies Q(x)
L30 Necessary and Sufficient Conditions
L31 Formal Definitions in Math - Ex: Even & Odd Integers
L32 How to Prove Math Theorems - 1st Ex: Even + Odd = Odd
L33 Step-By-Step Guide to Proofs - Ex: product of two evens is even
L34 Rational Numbers - Definition + First Proof
L35 Proving that divisibility is transitive
L36 Disproving implications with Counterexamples
L37 Proof by Division Into Cases
L38 Proof by Contradiction - Method & First Example
L39 Proof by Contrapositive - Method & First Example
L40 Quotient-Remainder Theorem and Modular Arithmetic
L41 Proof: There are infinitely many primes numbers
L42 Introduction to sequences
L43 The formal definition of a sequence.
L44 The sum and product of finite sequences
L45 Intro to Mathematical Induction
L46 Induction Proofs Involving Inequalities.
L47 Strong Induction
L48 Recursive Sequences
L49 The Miraculous Fibonacci Sequence
L50 Prove A is a subset of B with the ELEMENT METHOD
L51 Proving equalities of sets using the element method
L52 The union of two sets
L53 The Intersection of Two Sets
L54 Universes and Complements in Set Theory
L55 Using the Element Method to prove a Set Containment w/ Modus Tollens
L56 Relations and their Inverses
L57 Reflexive, Symmetric, and Transitive Relations on a Set
L58 Equivalence Relations - Reflexive, Symmetric, and Transitive
L59 You need to check EVERY spot for reflexivity, symmetry, and transitivity
L60 Introduction to probability // Events, Sample Space, Formula, Independence
L61 Example: Computing Probabilities using P(E)=N(E)/N(S)
L62 What is the probability of guessing a 4 digit pin code?
L63 Permutations: How many ways to rearrange the letters in a word?
L64 The summation rule for disjoint unions
L65 Counting formula for two intersecting sets: N(A union B)=N(A)+N(B)-N(A intersect B)
L66 Counting with Triple Intersections // Example & Formula
L67 Combinations Formula: Counting the number of ways to choose r items from n items.
L68 How many ways are there to reorder the word MISSISSIPPI? // Choose Formula Example
L69 Counting and Probability Walkthrough
L70 Intro to Conditional Probability
L71 Two Conditional Probability Examples (what’s the difference???)
L72 Conditional Probability With Tables - Chance of an Orange M&M???
L73 Bayes’ Theorem - The Simplest Case
L74 Bayes’ Theorem Example: Surprising False Positives
L75 Bayes’ Theorem - Example: A disjoint union
L76 Intro to Markov Chains & Transition Diagrams
L77 Markov Chains & Transition Matrices
L78 Intro to Linear Programming and the Simplex Method
L79 Intro to Graph Theory - Definitions & Ex: 7 Bridges of Konigsberg
L80 Properties in Graph Theory: Complete, Connected, Subgraph, Induced Subgraph
L81 Degree of Vertices - Definition, Theorem & Example - Graph Theory
L82 Euler Paths & the 7 Bridges of Konigsberg - Graph Theory
L83 The End of Discrete Math - Congrats! Some final thoughts


更多技术与课程清单 | 点击查看详细课程

合辑 课程链接
CS数学基础课程合辑 【ENGR108】Stanford斯坦福 · 线性代数与矩阵方法导论课程
【6.042J】MIT麻省理工 · 计算机科学的数学基础课程
【MATH100】辛辛那提大学 · 微积分Ⅰ课程
【MATH101】辛辛那提大学 · 微积分Ⅱ课程
【MATH1071】辛辛那提大学 · 离散数学课程
计算机基础课程合辑 【14-455】CMU卡内基梅隆 · 数据库系统导论课程
【15-721】CMU卡内基梅隆 · 数据库系统进阶课程
【CS105】Stanford斯坦福 · 计算机科学导论课程
【CS50-CS】Harvard哈佛 · 计算机科学导论课程
【CS50-WEB】Harvard哈佛 · 基于Python / JavaScript的Web编程课程
【6.0001】MIT麻省理工 · 计算机科学与Python编程导论课程
【6.046J】MIT麻省理工 · 数据结构与算法设计课程
【18.S191】MIT麻省理工 · 计算思维导论(Julia)课程
【CMSC420】马里兰大学 · 数据结构课程
机器学习课程合辑 【AndrewNG-ML】吴恩达 · 机器学习专项课程
【CS229】Stanford斯坦福 · 机器学习课程
【6.036】MIT麻省理工 · 机器学习导论课程
深度学习课程合辑 【AndrewNG-DL】吴恩达 · 深度学习专项课程
【CS230】Stanford斯坦福 · 深度学习课程
【CSW182】Berkeley伯克利 · 深度神经网络设计、可视化与理解课程
【FSDL】Berkeley伯克利 · 全栈深度学习训练营课程
【CS50-AI】Harvard哈佛 · Python人工智能入门课程
【6.S191】MIT麻省理工 · 深度学习导论课程
【APPLY-DL】科罗拉多大学 · 应用深度学习(全知识点覆盖)课程
【STAT453】威斯康星 · 深度学习和生成模型导论课程
【T81-558】WUSTL · 深度神经网络应用案例实操课程
【HYLEE】李宏毅 · 机器学习(&深度学习)课程
NLP课程合辑 【CS224n】Stanford斯坦福 · 深度学习与自然语言处理课程
【CS124】Stanford斯坦福 · 从语言到信息课程
【CS520】Stanford斯坦福 · 知识图谱课程
【CS685】马萨诸塞大学 · 自然语言处理进阶课程
计算机视觉课程合辑 【CS231n】Stanford斯坦福 · 深度学习与计算机视觉课程
【EECS498】Michigan密歇根 · 深度学习与计算机视觉(CS231n进阶课)
【ADL4CV】慕尼黑工大 · 计算机视觉深度学习进阶课
强化学习课程合辑 【CS285】Berkeley伯克利 · 深度强化学习课程
【CS234】Stanford斯坦福 · 强化学习课程
AI生物医疗课程合辑 【6.047】MIT麻省理工 · 基因组学机器学习课程
【6.874】MIT麻省理工 · 面向生命科学的深度学习课程
【6.S897】MIT麻省理工 · 医疗机器学习课程
其他名校AI课程合辑 【CS294】Berkeley伯克利 · 深度无监督学习课程
【11-777】CMU卡内基梅隆 · 多模态机器学习课程
【15-462】CMU卡内基梅隆 · 计算机图形学课程
【CS224W】Stanford斯坦福 · 图机器学习课程
【6.S094】MIT麻省理工 · 深度学习与无人驾驶课程
【GDL】AMMI · 几何深度学习课程
MATH1071; Discrete Math; 离散数学
*****
本文作者 韩信子
欢迎关注微信公众号 ShowMeAI研究中心 获取更多资源!