课程介绍
Trefor Bazett 教授在 Cincinnati 大学任教时,制作了两套完整的的数学课程(微积分、离散数学),上传网络后备受欢迎!课程覆盖核心知识要点,并借助可视化的方式做了生动讲解,是基础学习和查漏补缺的优先选择。
Calculus Ⅰ是微积分系列的第一个Part,内容覆盖函数、极限、导数、洛必达法则、链式法则与积分等。形象的可视化与活泼的授课方式,让你更好地掌握抽象的数学知识,为其他工科方向课程学习打好基础。
课程讲师 Trefor Bazett,2016-2019年任职于 University of Cincinnati,担任助理教授,系列课程也是那时制作完成!目前任职于University of Victoria,主要爱好是数学教育,同时对代数拓扑感兴趣。
课程资料 | 下载
扫描上方图片二维码,关注公众号并回复关键字 🎯『MATH100』,就可以获取整理完整的资料合辑啦!当然也可以点击 🎯 这里 查看更多课程的资料获取方式!
ShowMeAI 对课程资料进行了梳理,整理成这份完备且清晰的资料包:
- 📚 笔记:Paul Dawkins在 Lamar University 教授Calculus课程。这是他整理的课程笔记,对于任何想要学习或《微积分I》的人都非常有帮助。
- 📚 作业:同样是 Paul Dawkins 整理的课程作业习题。
- 📚 问题与解答:还是 Paul Dawkins 整理的常见问题和解答 (有解答!) 值得一看~
- 📚 拓展阅读材料:奉上《微积分学习终极笔记》,可以理解为 18页小抄表,重点和精华总结都在这里了~
说明1:课程没有对外发布直接的课件等资料。团队搜索和筛选了能找到的、最匹配的相关资源。
课程视频 | B站
ShowMeAI 将视频上传至B站,并增加了中英双语字幕,以提供更加友好的学习体验。点击页面视频,可以进行预览。推荐前往 👆 B站 观看完整课程视频哦!
本门课程,ShowMeAI 将部分章节进行了切分,按照主题形成更短小的视频片段,便于按照标题进行更快速的检索。切分后的视频清单列写在这里:
序号 | 视频清单 |
---|---|
L1 | The Velocity Problem - Part I: Numerically |
L2 | The Velocity Problem - Part II: Graphically |
L3 | A Tale of Three Functions - Intro to Limits Part I |
L4 | A Tale of Three Functions - Intro to Limits Part II |
L5 | What is an infinite limit? |
L6 | Limit Laws - Breaking Up Complicated Limits Into Simpler Ones |
L7 | Building up to computing limits of rational functions |
L8 | Limits of Oscillating Functions and the Squeeze Theorem |
L9 | Top 4 Algebraic Tricks for Computing Limits |
L10 | A Limit Example Combining Multiple Algebraic Tricks |
L11 | Limits are simple for continuous functions |
L12 | Were you ever exactly 3 feet tall? The Intermediate Value Theorem |
L13 | Example: When is a Piecewise Function Continuous? |
L14 | Limits “at” infinity |
L15 | Computing Limits at Infinity for Rational Functions |
L16 | Infinite Limit vs Limits at Infinity of a Composite Function |
L17 | How to watch math videos |
L18 | Definition of the Derivative - Part I |
L19 | Applying the Definition of the Derivative to 1/x |
L20 | Definition of Derivative Example: f(x) = x + 1/(x+1) |
L21 | The derivative of a constant and of x^2 from the definition |
L22 | Derivative Rules: Power Rule, Additivity, and Scalar Multiplication |
L23 | How to Find the Equation of a Tangent Line |
L24 | The derivative of e^x. |
L25 | The product and quotient rules |
L26 | The derivative of Trigonometric Functions |
L27 | Chain Rule: the Derivative of a Composition |
L28 | Interpreting the Chain Rule Graphically |
L29 | The Chain Rule using Leibniz notation |
L30 | Implicit Differentiation - Differentiation when you only have an equation, not an explicit function |
L31 | Derivative of Inverse Trig Functions via Implicit Differentiation |
L32 | The Derivative of ln(x) via Implicit Differentiation |
L33 | Logarithmic Differentiation - Example: x^sinx |
L34 | Intro to Related Rates |
L35 | Linear Approximations - Using Tangent Lines to Approximate Functions |
L36 | The MEAN Value Theorem is Actually Very Nice |
L37 | Relative and Absolute Maximums and Minimums - Part I |
L38 | Relative and Absolute Maximums and Minimums - Part II |
L39 | Using L’Hopital’s Rule to show that exponentials dominate polynomials |
L40 | Applying L’Hopital’s Rule to Exponential Indeterminate Forms |
L41 | Ex: Optimizing the Volume of a Box With Fixed Surface Area |
L42 | Folding a wire into the largest rectangle - Optimization example |
L43 | Optimization Example: Minimizing Surface Area Given a Fixed Volume |
L44 | Tips for Success in Flipped Classrooms + OMG BABY!!! |
L45 | What’s an anti-derivative? |
L46 | Solving for the constant in the general anti-derivative |
L47 | The Definite Integral Part I: Approximating Areas with rectangles |
L48 | The Definite Integral Part II: Using Summation Notation to Define the Definite Integral |
L49 | The Definite Integral Part III: Evaluating From The Definition |
L50 | Reverse Riemann Sums - Finding the Definite Integral Given a Sum |
L51 | Fundamental Theorem of Calculus 1 - Geometric Idea + Chain Rule Example |
L52 | Fundamental Theorem of Calculus II |
L53 | Intro to Substitution - Undoing the Chain Rule |
L54 | Adjusting the Constant in Integration by Substitution |
L55 | Substitution Method for Definite Integrals careful! |
L56 | Back Substitution - When a u-sub doesn’t match cleanly! |
L57 | Average Value of a Continuous Function on an Interval |
L58 | Exam Walkthrough - Calc 1, Test 3 - Integration, FTC I/II, Optimization, u-subs, Graphing |