Berkeley深度神经网络设计、可视化与理解-学习资料
Berkeley深度神经网络设计、可视化与理解课程,内容覆盖卷积网络、计算机视觉、可视化、风格迁移、RNN、seq2seq、Transformer、模仿学习、梯度策略、Actor Critic、Q-Learning、生成模型、GAN、元学习等

关键词标签: Berkeley, 卷积网络, 计算机视觉, 可视化, 风格迁移, RNN, seq2seq, Transformer, 模仿学习, 梯度策略, Q-Learning, 生成模型, GAN, 元学习
CSW182; Deep Learning: Designing, Visualizing and Understanding Deep Neural Networks; 深度神经网络设计、可视化与理解
🏆 课程学习中心 | 🚧 深度学习课程合辑 | 🌍 课程主页 | 📺 中英字幕视频 | 🚀 项目代码解析
Deep Learning: Designing, Visualizing and Understanding Deep Neural Networks
深度神经网络设计、可视化与理解
University of California, Berkeley
伯克利(加利福尼亚大学伯克利分校)
CSW182
⭐⭐⭐⭐⭐


课程介绍

CSW182; Deep Learning: Designing, Visualizing and Understanding Deep Neural Networks; 深度神经网络设计、可视化与理解

深度网络彻底改变了计算机视觉技术、语言技术和机器人技术,给科研和工程实践带来了深远的影响。那么,如何对深度网络开展研究与应用呢?用 AI 领域的大佬 Yann Lecun 的话来说,这个过程『需要直觉洞察、理论建模、动手落地、实证研究和科学分析之间的相互作用』。Berkeley课程 CSW182/282A 也将遵照这个范式进行教学和作业设计。

CSW182; Deep Learning: Designing, Visualizing and Understanding Deep Neural Networks; 深度神经网络设计、可视化与理解

CSW182/282A 是全球顶校 UC Berkeley 开设的 AI 专项课程,课程以深度学习的典型方法、模型设计、可视化与模型理解为主题,讲解了自然语言处理、计算机视觉、强化学习等领域的AI模型全域知识。学生将学习设计原则和最佳实践,可视化与理解深度网络。并通过可视化工具探索深度网络的训练和使用方法。

CSW182; Deep Learning: Designing, Visualizing and Understanding Deep Neural Networks; 深度神经网络设计、可视化与理解

课程讲师 Sergey Levine,加州大学伯克利分校副教授,任职于电气工程和计算机科学系。专注于使自主代理通过学习获得复杂行为的算法研究,特别聚焦于『使任何自主系统学习解决任何任务』的通用方法探索——例如我们常见的机器人技术,以及一系列需要自主决策的其他领域。


课程主题

课程官网发布了课程主题,ShowMeAI 对其进行了整理翻译。


课程资料 | 下载

CSW182; Deep Learning: Designing, Visualizing and Understanding Deep Neural Networks; 深度神经网络设计、可视化与理解

扫描上方图片二维码,关注公众号并回复关键字 🎯『CSW182』,就可以获取整理完整的资料合辑啦!当然也可以点击 🎯 这里 查看更多课程的资料获取方式!

CSW182; Deep Learning: Designing, Visualizing and Understanding Deep Neural Networks; 深度神经网络设计、可视化与理解
CSW182; Deep Learning: Designing, Visualizing and Understanding Deep Neural Networks; 深度神经网络设计、可视化与理解

CSW182 课程由深度学习核心内容讲解、4次编程作业、2次期中测试和1个大项目构成,并公开了相关资料。ShowMeAI 对课程资料进行了梳理,整理成这份完备且清晰的资料包:


课程视频 | B站

[🌍 **B站 | 【双语字幕+资料下载】伯克利CSW182 | 深度神经网络设计、可视化与理解(2021最新·完整版) **](https://www.bilibili.com/video/BV1Ff4y1n7ar)

ShowMeAI 将视频上传至B站,并增加了中英双语字幕,以提供更加友好的学习体验。点击页面视频,可以进行预览。推荐前往 👆 B站 观看完整课程视频哦!

本门课程,ShowMeAI 将部分章节进行了切分,按照主题形成更短小的视频片段,便于按照标题进行更快速的检索。切分后的视频清单列写在这里:

课时编号 课时内容
第1讲 介绍
第2讲 机器学习基础
第3讲 错误分析
第4讲 优化
第5讲 反向传播
第6讲 卷积神经网络
第7讲 初始化、批量归一化
第8讲 计算机视觉
第9讲 可视化和风格迁移
第10讲 循环神经网络
第11讲 序列到序列
第12讲 Transformers
第13讲 NLP应用
第14讲 模仿学习
第15讲 梯度策略
第16讲 Actor Critic和 Q 学习
第17讲 生成模型
第18讲 潜在变量模型
第19讲 GAN
第20讲 对抗样本与攻击
第21讲 元学习


学习建议

课程学习具有以下知识基础:


更多技术与课程清单 | 点击查看详细课程

合辑 课程链接
CS数学基础课程合辑 【ENGR108】Stanford斯坦福 · 线性代数与矩阵方法导论课程
【6.042J】MIT麻省理工 · 计算机科学的数学基础课程
【MATH100】辛辛那提大学 · 微积分Ⅰ课程
【MATH101】辛辛那提大学 · 微积分Ⅱ课程
【MATH1071】辛辛那提大学 · 离散数学课程
计算机基础课程合辑 【14-455】CMU卡内基梅隆 · 数据库系统导论课程
【15-721】CMU卡内基梅隆 · 数据库系统进阶课程
【CS105】Stanford斯坦福 · 计算机科学导论课程
【CS50-CS】Harvard哈佛 · 计算机科学导论课程
【CS50-WEB】Harvard哈佛 · 基于Python / JavaScript的Web编程课程
【6.0001】MIT麻省理工 · 计算机科学与Python编程导论课程
【6.046J】MIT麻省理工 · 数据结构与算法设计课程
【18.S191】MIT麻省理工 · 计算思维导论(Julia)课程
【CMSC420】马里兰大学 · 数据结构课程
机器学习课程合辑 【AndrewNG-ML】吴恩达 · 机器学习专项课程
【CS229】Stanford斯坦福 · 机器学习课程
【6.036】MIT麻省理工 · 机器学习导论课程
深度学习课程合辑 【AndrewNG-DL】吴恩达 · 深度学习专项课程
【CS230】Stanford斯坦福 · 深度学习课程
【CSW182】Berkeley伯克利 · 深度神经网络设计、可视化与理解课程
【FSDL】Berkeley伯克利 · 全栈深度学习训练营课程
【CS50-AI】Harvard哈佛 · Python人工智能入门课程
【6.S191】MIT麻省理工 · 深度学习导论课程
【APPLY-DL】科罗拉多大学 · 应用深度学习(全知识点覆盖)课程
【STAT453】威斯康星 · 深度学习和生成模型导论课程
【T81-558】WUSTL · 深度神经网络应用案例实操课程
【HYLEE】李宏毅 · 机器学习(&深度学习)课程
NLP课程合辑 【CS224n】Stanford斯坦福 · 深度学习与自然语言处理课程
【CS124】Stanford斯坦福 · 从语言到信息课程
【CS520】Stanford斯坦福 · 知识图谱课程
【CS685】马萨诸塞大学 · 自然语言处理进阶课程
计算机视觉课程合辑 【CS231n】Stanford斯坦福 · 深度学习与计算机视觉课程
【EECS498】Michigan密歇根 · 深度学习与计算机视觉(CS231n进阶课)
【ADL4CV】慕尼黑工大 · 计算机视觉深度学习进阶课
强化学习课程合辑 【CS285】Berkeley伯克利 · 深度强化学习课程
【CS234】Stanford斯坦福 · 强化学习课程
AI生物医疗课程合辑 【6.047】MIT麻省理工 · 基因组学机器学习课程
【6.874】MIT麻省理工 · 面向生命科学的深度学习课程
【6.S897】MIT麻省理工 · 医疗机器学习课程
其他名校AI课程合辑 【CS294】Berkeley伯克利 · 深度无监督学习课程
【11-777】CMU卡内基梅隆 · 多模态机器学习课程
【15-462】CMU卡内基梅隆 · 计算机图形学课程
【CS224W】Stanford斯坦福 · 图机器学习课程
【6.S094】MIT麻省理工 · 深度学习与无人驾驶课程
【GDL】AMMI · 几何深度学习课程
CSW182; Deep Learning: Designing, Visualizing and Understanding Deep Neural Networks; 深度神经网络设计、可视化与理解
*****
本文作者 韩信子
欢迎关注微信公众号 ShowMeAI研究中心 获取更多资源!